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From the fundamental conservation equations of mass, momentum and en-
ergy for an ideal fluid of uniform entropy, one can derive a wave equation of
aerodynamic sound, which can be reduced to a compact form, called the wave
equation of vortex sound with a source term of the form ρ0 div(ω × v) for
the acoustic pressure p′, where ρ0 is the undisturbed density. We can consider
generation of acoustic waves by vortex-vortex interactions on the basis of this
equation. As an axisymmetric problem, we can deduce an expression of the
wave profile generated by head-on collision of two coaxial vortex rings, which
is characterized as qudrupolar emission.

On the other hand, based on the matched asymptotic expansion equivalent
to the multipole expansions, one can derive a formula of wave pressure excited
by time-dependent vorticity field localized in space. It can be applied to var-
ious problems of vortex sound such as an interaction of a vortex-ring with a
solid body, and an oblique collision of two vortex rings as well as the head-on
collision problem where the same formula as before can be derived. In the case
of vortex-body interaction, it is found that the acoustic wave profile can be
related to the time derivative of volume flux (through the vortex ring) of an
imaginary potential flow around the body (as if like the Faraday’s law), which
is characterized as dipolar emission. The case of interaction of a vortex and a
sharp edge is studied in terms of the original equation of aerodynamic sound
becasue an edge plate is usually a non-compact body.

All the wave emissions were detected in the experiments of the author’s
group.

1 Introduction

It would be no exaggeration to say that any vortex motion excites acoustic waves.
Physical idea is as follows. Suppose that there exists unsteady fluid flow whose vorticity
distribution is compact, that is the vorticity ω(x) is localized in space, i.e. ω(x) is non-
zero only for x ∈ D, where D is a bounded domain in R

3 with its length scale denoted
by l. The vorticity field ω induces a velocity field v(x) whose representative magnitude is
denoted by u, where the velocity field is assumed to satisfy div v = 0 approximately, i.e.
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the flow is incompressible approximately. The flow may be called a vortex motion. Thus,
the vortex motion drives acoustic waves.

The flow field is surrounded by an outer wave field scaled on the length λ = cτ , where
c is the sound speed in the undisturbed medium at rest and τ = l/u is a typical time scale
of the vortex motion. A Mach number of the flow may be defined by M = u/c, which is
assumed to be much less than unity:

M = u/c � 1.

Owing to this condition, the whole space is separated into two: a space of inner source
flow and that of outer field of wave propagation, because the wave scale λ = l/M is much
larger than the scale l of the source flow. Theory of vortex sound can be developed under
these circumstances.

Reformulating the theory of aerodynamic sound by Lighthill [1], the sound source was
identified with a term of the form ρ0 div(ω × v) at low M , first by Powell [2] and later
by Howe [3], where ρ0 is the undisturbed fluid density. Thus, the wave equation for the
acoustic pressure p is written as

c−2 ∂2
t p−∇2p = ρ0 div(ω × v), (∂t = ∂/∂t) (1)

in the limit of M(= u/c)→ 0. This can be derived as an approximation from the conser-
vation equations of mass, momentum and energy, which will be shown below.

It is assumed that the undisturbed state is characterized by uniform density ρ0, pres-
sure p0, entropy s0 and enthalpy w0, and that ρ′, p′, s′ and w′ denote deviations from the
uniform values. The shear viscosity µ, kinematic viscosity ν = µ/ρ0, thermal conductivity
k and sound speed c =

√
(∂p/∂ρ)s

∣∣
ρ=ρ0,p=p0

are assumed constant.

2 Wave equations

2.1 Lighthill’s equation of aerodynamic sound
We consider first the fundamental conservation equations of mass and momentum of

a viscous fluid, which are written as

∂

∂t
ρ +

∂

∂xi
(ρvi) = 0 , (2)

∂

∂t
(ρvi) +

∂

∂xk
Πik = 0, (3)

Πik = ρvivk + (p− p0)δik − σik, (4)

where Πik is the stress tensor and σij is the viscous stress tensor defined by

σik = µ eik, eik = ∂vi/∂xk + ∂vk/∂xi − 2
3 δik ∂vl/∂xl, (5)

with µ the shear viscosity. A constant term p0δik is added to Πik, which is introduced for
convenience and has no influence in the momentum equation.
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Differentiating (2) with respect to t and taking divergence of (3), we can eliminate
the common term of the form ∂t∂(ρvi)/∂xi from the two equations. Thus, we obtain the
following Lighthill’s equation for ρ′:

(∂2
t − c 2∇2) ρ′ =

∂

∂xi

∂

∂xk
Tik, (6)

(ρ′ = ρ− ρ0, p
′ = p− p0), where Tik is the Lighthill’s tensor defined by

Tik = Πik − c2 ρ′ δik = ρvivk + ( p′ − c 2 ρ′ ) δik − σik. (7)

The second term c 2∇2ρ′ of (6) is newly added, which is to be cancelled by the term c2ρ′δik

in Tik.
Lighthill (1952) used the wave equation (6) to predict the well-known U8-law, which

means that the acoustic power emitted by a turbulent flow of representative flow speed U
is proportional to U8.

2.2 Reformulation of the equation of aerodynamic sound

Conservation equations of mass, momentum and energy of a viscous fluid can be rewrit-
ten as follows (Kambe & Minota [4, Appendix A]):

∇ · v = −1
ρ

Dρ
Dt

, (8)

∂v

∂t
+ L+∇(12 v2) = −1

ρ
∇ p+ ν∇ · e, (9)

T
Ds
Dt

= ν e : ∇v + k∇2T, (10)

where T and s are the temperature and entropy (per unit mass) respectively, D/Dt is the
convective derivative ∂t + v · ∇, and

L = ω × v (11)
e ≡ (eik), ∇ · e = (∂/∂xk)eik, e : ∇v = eik (∂/∂xi)vk.

Using thermodynamic relations, the pressure p and density ρ can be expressed in terms
of the entropy s and enthalpy w:

1
ρ
dp = dw − T ds,

1
ρ
dρ =

1
c2
dw −

(
T

c2
+
1
cp

)
ds, (12)

where cp is the specific heat at constant pressure. On eliminating ρ−1grad p by using the
first equation of (12), the equation (9) is transformed to

∇(w + 1
2
v2) +

∂v

∂t
− T∇s = −L+ ν∇ · e. (13)
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Similarly, with use of the second equation of (12), the equation (8) is written as

∇ · v = − 1
c2

D
Dt

w +
(
T

c2
+
1
cp

)
D
Dt

s . (14)

Taking divergence of (13), we have

∇2(w + 1
2 v

2) +
∂

∂t
∇ · v −∇ · (T∇s) = −∇ · L+ ν∇∇ : e, (15)

where ∇∇ : e = (∂/∂xi)(∂/∂xk)eik = 4
3 ∇2(∇ · v). The term (∂/∂t)∇ · v of (15) can

be expressed in terms of w and s by using (14), in which (v · ∇)w can be eliminated by
using the equation obtained with taking scalar product of v and (13). Thus, we find the
following inhomogeneous wave equation:

(∇2 − c−2 ∂2
t ) (w + 1

2 v
2) = −F (x, t), (16)

F (x, t) = ∇ · L+ c−2 ∂2
t v

2 + c−2 ∂t[(v · ∇)12 v2] +
∂

∂t

(( T

c2
+
1
cp

)Ds
Dt

)

+∇ · (T∇s)− νc−2∂t[v∇ : e] + 4
3 ν∇2(∇ · v). (17)

Obviously, the equation (16) is a wave equation for the wave variable w + 1
2 v

2 with a
source term F (x, t) defined by (17), and is called as the equation of aerodynamic sound
of viscous flows.

This is transformed immediately to the following integral form (by the standard theory
of wave equation):

[
w + 1

2 v
2
]
(x, t) =

1
4π

∫
F (y, tr)
|x − y| d

3y, (18)

by using the retarded time tr = t− |x − y|/c, expressing the time delay due to the wave
propagation from the source position at y to the observation station at x.

2.3 Equation of vortex sound

Suppose that the vorticity ω(x) is localized in space, i.e. the vorticity distribution is
compact. Then the velocity field v(x) induced by the vorticity ω(x) has an asymptotic
property decaying as O(r−3) in the far field as r = |x| → ∞. In the far field where
deviations from the uniform state is infinitesimal and the wave propagation is regarded
as adiabatic (i.e. ds = 0), we have w + 1

2 v
2 → p/ρ0 from the first of the thermodynamic

relations (12) since |v(x)| = O(r−3). Then the equation (18) becomes

p(x, t) =
ρ0

4π

∫
F (y, tr)
|x − y| d

3y, tr = t− |x − y|
c

. (19)

It is well-known that the rate of viscous dissipation of kinetic energy, denoted by K ′(t), is
given by

K ′(t) :=
d
dt

∫
V

1
2 v

2 d3y = −ν

∫
V
eik

∂vi

∂xk
d3y. (20)
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The heat delivered to the fluid in unit time is equal to the rate of dissipation of kinetic
energy, i.e. −K′(t) is equal to the space integral of TDs/Dt. Using these relations, we can
simplify the above expression (19) of acoustic pressure under the viscous action as follows
(Kambe & Minota [4, Appendix A]):

p(x, t) =
ρ0

4π

∫ ∇ · L
|x − y| d

3y +
ρ0

4πc2
(2− γ)

1
r
K ′′(t− r

c
) (21)

= − ρ0

4πc
xi

r2

∂

∂t

∫
Li(y, t− r

c
) d3y +

ρ0

4πc2
(2− γ)

1
r
K ′′(t− r

c
). (22)

where L = ω × v.
In an ideal fluid where there is no viscous dissipation, the kinetic energy K is constant.

Hence the second term vanishes identically in the above expression (21) (or (22)). Then,
the expression (21) implies the following differential equation:

1
c2

∂2
t p−∇2p = ρ0 ∇ · L, = ρ0 div(ω × v), (23)

which is called the equation of vortex sound. This is used as a basic governing equation in
the present context, where it is assumed that the source vorticity ω(x, t) is locallized and
compact in space and its representative Mach numberM is sufficiently low. It is remarked
that p(x, t) satisfies the wave equation (23) (approximately), when x is far from a compact
source at y. If the source term ρ0 div(ω × v) is evaluated with the incompressible vortex
motion, then the error would be O(M2).

The acoustic waves generated by vortex motion in an ideal fluid is also represented
by the first term of (22) for a compact vorticity ω. The same expression can be derived
from the other formulation, that is the matched asymptotic expansion equivalent to the
multipole expansions, which is the subject of the next section.

3 Inner region and outer region

As described in the introduction, if the vorticity field is compact in space and the
typical flow Mach number is much less than unity, the whole space is separated into two:
a space of inner source flow and that of outer field of wave propagation, because the wave
scale λ = l/M is much larger than the scale l of the source flow.

3.1 Inner flow region

The inner region is scaled on l, the inner velocity is scaled on u, and inner dimensionless
variables are denoted with a bar (τ = l/u):

x̄i =
xi

l
, t̄ =

t

τ
, p̄ =

p− p0

ρ0u2
, v̄i =

vi

u
, ∇̄ = l∇. (24)

Then, the equation (23) is rewritten as

∇̄2p̄ = −div(ω̄ × v̄) + O(M2). (25)
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The equation of an incompressible fluid is equivalent to neglecting the O(M2) terms.
Let us consider a solenoidal velocity field v(x) (i.e. divv = 0) induced by a compact

vorticity field ω(x), which is given at an initial instant in a bounded domain D0 of linear
dimension O(l) and stays in bounded domain D at subsequent times. The ω(x) is governed
by the vorticity equation:

∂tω +∇× (ω × v) = 0. (26)

Introducing a vector potential A(x), the solenoidal velocity is expressed as

v(x, t) = curlA, A(x, t) =
1
4π

∫
D

ω(y, t)
|x − y| d

3y. (27)

It can be shown that curlv = ω in the free space.
At large distances x ≡ |x| � y ≡ |y| for y ∈D, we have an asymptotic expansion,

1
|x − y| =

1
x
− yi

∂

∂xi

1
x
+ 1

2
yiyj

∂2

∂xi ∂xj

1
x
+ · · · . (28)

Outside D, the velocity is irrotational (by definition) and represented by the form v =
gradΦ. The velocity potential Φ associated with the vorticity ω(x, t) is given by the series
expansion at large x = |x| as

Φ(x, t) =
1
4π

Pi
∂

∂xi

1
x
−Qij

∂2

∂xi ∂xj

1
x
+ O(x−4), (29)

Pi = 1
2

∫
D
(y × ω)i d3y, Qij =

1
12π

∫
D
yi(y × ω)j d3y (30)

(see [6]). The term corresponding to the first term of (28) vanishes owing to the property∫
ωid3y = 0. The vector Pi is the flow impulse, and the tensor Qij (satisfying Qii = 0)

is a second moment of the vorticity distribution, which will be related later to the wave
profile generated by the vortex motion. In general they depend on the time t. In the
absence of external forces and bodies, the impulse Pi is conserved. It will be shown that
the excitation of an acoustic wave by a rotational flow (27) is closely related to the time
dependence of the coefficients of the multipole expansion (29). It is obvious from (29) that
the magnitude of vi = ∂Φ/∂xi is O(x−3) as x → ∞.
3.2 Outer wave region

Next, we consider the space with a much larger scale. Using the scaling length λ(� l),
we obtain the following estimate of magnitudes,

O

(
1
c2

ptt

) /
O(∇2p) =

λ2

c2τ2
≈ 1 .

Hence, the two terms on the left hand side of (23) are comparable in magnitudes. In
general, the pressure p associated with compressible motion (therefore ptt/c

2 as well)
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decays as x−1, whereas the velocity vi on the right hand side decays like O(x−3) for the
solenoidal component.1 Introducing the outer variables defined by

x̂i =
xi

λ
=Mx̄i, t̂ = t̄ =

t

τ
, M = l/λ,

p̂ =
p− p0

ρ0u2
, v̂i =

vi

u
, ∇̂ = λ∇. (31)

we find that the equation (23) is rewritten as

∂2

∂t̂2
p̂− ∇̂2p̂ = 0, (32)

neglecting O(M4+2β) terms relative to those retained. This is a wave equation, implying
that there exists a region of wave propagation at large distances.

4 Pressures in inner and outer regions

To the leading order, the flow in the inner region is governed by the equation of motion
of an incompressible fluid, and the pressure of incompressible flows is determined by

∇2p = −ρ0 ∇ · L, (33)

according to (25). This is a Poisson type equation for p. Introducing the Green’s function
G(x,y) satisfying

∇ 2
xG(x,y) = −δ(x − y), (34)

where∇x is a nabla operator with respect to the variable x = (xi), we obtain the following
integral representation for the inner pressure pI,

pI := p− p0 = ρ0

∫
G(x,y)∇ · L(y, t) d3y. (35)

in unbounded space, where G(x,y) is the free space Green’s function given below.
If there is a solid body, boundary conditions are to be imposed on the body surface S:

n · v = 0, on S, (36)
n · ∇yG = 0, for y on S, (37)

where n is a unit normal to S. Then, the inner pressure is represented by

pI(x, t) = −ρ0

∫
L(y, t) · ∇yG(x,y) d3y. (38)

1The compressible component of velocity, which is given by p/cρ0 in the linear theory of sound wave
and infinitesimal, decays as u(l/x)M 1+β (β > 0).
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It is remarkable that this integral representation is valid whether a solid body is present
or not (Kambe [5]).

The outer region is governed by the wave quation (32). With using an arbitrary
function a(t̂) and x̂ = |x̂|, a function of the form x̂−1 a(t̂− x̂) is a solution of the equation
(32). Its derivative, obtained by differentiating arbitrary times with respect to the space
coordinates x̂i, is a solution as well. Thus the acoustic pressure pO = p− p0 in the outer
region is represented in the form of multipole expansions:

pO(x, t) =
A0(t̂− x̂)

x̂
+

∂

∂x̂i

Ai(t̂− x̂)
x̂

+
∂2

∂x̂i ∂x̂j

Aij(t̂− x̂)
x̂

+ · · · , (39)

where t̂ − x̂ = (t − x/c)/τ is the retarded time in the outer variables. The functions
A0(t̂), Ai(t̂), Aij(t̂), · · · (with the dimension of pressure) are unknowns to be determined
by matching to the inner pressure pI. In other words, the pressure pO represents the
acoustic waves generated by vortex motion if the functions A0(t̂), Ai(t̂), Aij(t̂), · · · are
expressed in terms of the vorticity ω(x, t).

The matching of the two expressions pI(x, t) and pO(x, t) is carried out in an inter-
mediate region, on the basis of the method of matched asymptotic expansions. By this
matching, the functions A0(t̂), Ai(t̂), Aij(t̂), · · · are represented with the vorticity ω(x, t).
Then, the wave pO(x, t) of (39) is called the vortex sound.

5 Vortex sound in free space

The Green’s function in free space is given by

G(x,y) =
1

4π|x − y| . (40)

which is to be substituted in (38). In the present formulation, it is assumed that the point
of observation x is at large distances from the point y located within the vortex flow, i.e.
it is assumed that x � y where y = O(l). Using the expansion (28), one can find the
following expansion [5],

∇yG(x,y) = − 1
4π

∇1
x
+∇y × g + O(x−4), (41)

g(x,y) :=
1

4πx5
(x · y)(x × y). (42)

When (41) is substituted into (38), it is readily seen that the contribution from the first
term disappears. Regarding the second term, integration by parts transforms the integrand
into the form −ρ0(∇× L) · g. Noting L = ω × v, we find that ∇× L = −∂tω from (26).
Thus, the inner pressure is reduced to the expression,

pI(x, t) = ρ0
d
dt

∫
ω(y, t) · g(x,y) d3y + O(x−4)

= ρ0 Q
′

ij(t)
∂2

∂xi ∂xj

1
x
+ O(x−4), (43)
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where the tensor Qij is defined in (30) and the prime denotes differentiation with respect
to the time t. It is remarkable that the factor ∂2/∂xi ∂xj)x−1 of the leading term denotes
quadrupole potentials with time-dependent coefficient Q

′
ij(t).

The matching procedure described above leads to the expression of the outer pressure
given by

pO(x, t) = ρ0
∂2

∂xi ∂xj

Q
′

ij(t− x/c)
x

. (44)

This is the pressure formula of the vortex sound [5].
In the far field as x̂ → ∞, the pressure takes the following simpler form,

pF(x, t) =
ρ0

c2
xi xj

x3
Q

′′′
ij (t− x/c). (45)

which has the property of a qudupolar wave, where from (30)

Qij =
1
12π

∫
D

yi(y × ω)j d3y. (46)

6 Head-on collision of two vortex rings

Experimental detection of the vortex sound was made first for a head-on collision of
two vortex rings [4]. This is an axisymmetric problem, in which vortex lines are circular
with a common symmetry axis (taken as z-axis) and the vorticity has only the azimuthal
component in the cylindrical coordinate system (z,R, φ), i.e. ω = (0, 0, ω(z,R) ). Using
the spherical coordinates x = (r, θ, φ), the observation point x = (x, y, z) are expressed
as x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. Then, the tensor Qij of (46) are
found to be diagonal:

Qzz = −2Qxx = −2Qyy := (1/6)Q(t), Qij = 0 (i 
= j),

where

Q(t) :=
∫ ∫

z R2 ω(z,R, t) dz dR. (47)

Thus, the far field acoustic pressure (45) generated by the head-on collision of two vortex
rings is reduced to

p(r, θ, t) =
ρ0

4c2
1
r
(cos2 θ − 1

3 ) Q
′′′
(t− r/c), (48)

where r, θ are the coordinates of the observation point. The azimuthal component of the
vorticity ω(z,R, t) is governed by the vorticity equation (26), and determines the time
evolution of the function Q(t).
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This formulation can be applied to a discrete set of N circular vortex rings whose
common axis coincides with the z axis. The factor ω dz dR in the integrand of (47) stands
for the strength (dΓ, say) of an elemental vortex ring at (Z,R). Therefore the function
Q(t) for N vortex rings can be written as

Q(t) =
N∑

i=1

Zi R
2
i Γi, (49)

where Ri, Zi and Γi are the radius, axial position and strength of the i-th vortex, respec-
tively.

Head-on collision of two identical vortex rings (i = 1, 2) with opposite circulations is
represented by N = 2, and we may set R1 = R2 ≡ R(t), Z1 = −Z2 ≡ Z(t) (> 0) and
−Γ1 = Γ2 ≡ Γ(> 0), where the mid-plane of collision is at z = 0. Thus, we may define

Q(t) = −2ΓR2(t)Z(t). (50)

The orbit (Z(t), R(t)) of a vortex ring in the inviscid fluid is given together with the time
factor Q′′′(t) in [7].

A direct numerical simulation was carried out to obtain the time factor Q′′′(t) for the
vortex collision in a viscous fluid, which is shown in [8].

7 Sound emission by vortex-body interaction

7.1 dipolar emission

When there is a solid body in the vicinity of the vortex motion, the wave field is
characterized by a dipolar emission rather than the quadrupolar emission considered so
far in free space. The boundary condition to be satisfied on the body surface causes the
more powerful emission of waves of dipole nature. The changing pressure over the body
surface results in changing net force acting on the body. Conversely the fluctuating force,
multiplied by a minus sign, is equivalent to the rate of change of the resultant momentum
of the fluid.

In the presence of a solid body of size O(l) near the vortex motion, the Green’s function
is given approximately by

GB(x,y) =
1

4π|x − Y (y)| , (51)

Y (y) = y +Φ(y). (52)

This is valid when x is far from the body, i.e. |x| � l. The vector function Yi(x) denotes
the velocity potential (i.e. ∇2Yi = 0) of a hypothetical flow around the body with a unit
velocity to the yi direction at infinity (i = 1, 2, 3). The first term yi represents the uniform
flow of a unit velocity and the vector function Φi(y) represents a correction due to the
presence of a body which imposes the boundary condition of vanishing normal velocity.
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When there is no solid body, one may put Φi = 0. Then the function (51) reduces to (40)
for the free space.

The function GB(x − y) satisfies the boundary condition on the body surface S,

n · ∇y GB = 0, for y on S.

This is verified by differentiating (51) with respect to yi,

∇y GB(x,y) =
(xi − Yi)∇yYi

4π|x − Y (y)|3 , (53)

and using the property n ·∇Yi = 0 for y on S, since ∇Yi denotes the velocity of a potential
flow around the body. It is readily seen that the function GB tends to 1/[4π|x − y|] as
x/l, y/l → ∞, since we have |Φ(y)| = O(y−2) for a body of size O(l).

For |x| � |y| in (51), we develop it in a form similar to (28), but using Yi in place of
yi and apply the operator ∇ 2

y . Then, the first two terms disappear (since ∇2Yi = 0), and
the third term gives

∇ 2
y GB =

1
8π

∇ 2
y(Yi Yj)

∂2

∂xi ∂xj

1
x
= O(x−3).

Therefore the function GB satisfies the equation ∇2GB = 0 within an error of O(x−3).
However, the term of ∇y GB to be used in the following is a lower-order term of O(x−2)
(see below). Thus, GB has the correct behavior up to that order. This permits us to use
(51) as the Green’s function in the present context.

Using an asymptotic expansion of the form (28), the expression (53) is written as

∇y GB =
xi

4πx3
∇yYi +O(x−3). (54)

The velocity field of the potential flow given by ∇yYi is solenoidal in the y-space. This
permits introduction of a vector potential Ψi(y) (a vector for each i = 1, 2, 3) by the
relation,

∇yYi = ∇y ×Ψi, divΨi = 0 (i = 1, 2, 3). (55)

In cases of two-dimension or axisymmetry, the vector Ψi is related to the stream function.
Each component of Ψi is harmonic since 0 ≡ ∇ × (∇ ×Ψ) = −∇2Ψi. One may choose
that Ψi = 0 on S without violating (55). Using (54) and (55) in (38), one obtains

pI(x, t) = − ρ0

4π
xi

x3

∫
L · (∇y ×Ψi) d3y +O(x−3). (56)

Integrating by parts and using (26), one finds

pI(x, t) = − ρ0

4π
Π̇i

∂

∂xi

1
x
+O(x−3), (57)

Πi(t) =
∫

ω(y, t) ·Ψi(y) d3y. (58)
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Thus the inner pressure is of the form of a dipole potential in the leading order.
Corresponding outer pressure is given by

pO(x, t) = − ρ0

4π
∂

∂xi

Πi(t− x/c)
x

. (59)

In the far field as x̂ = x/λ → ∞, this reduces to
pF(x, t) = − ρ0

4πc
Π̇i(t− x/c)

xi

x2
. (60)

This represents a dipolar emission by the vortex-body interaction.

7.2 Emission from a loop vortex : (Acoustic Faraday law)
The dipole-emission law (60) is given an interesting interpretation in the following way.

Suppose that there exists a vortex tube forming a closed loop, of which the centerline is
denoted by a closed curve C. Writing a line element of C as ds, Πi(t) of (58) is rewritten
as

Πi(t) = Γ
∮

C

Ψi(s) · ds = Γ
∫

S

(∇y ×Ψi(y)) · n dS(y) (61)

where S is an open surface with the circumference bounded by the closed curve C, and
∇×Ψi represents the velocity of a hypothetical potential flow (with a unit velocity in the
yi direction) around the body. Thus, the second expression of Πi represents the volume
flux Ji of the hypothetical flow through the loop C multiplied by Γ:

Πi(t) = ΓJi(t), Ji(t) =
∫

S
(∇×Ψi) · n dS. (62)

The volume flux Ji depends on the vortex position. Although the potential flow ∇×Ψi

is steady, the flux Ji is time-dependent because the vortex position (represented by the
curve C) changes.

Thus, the following law is found: when a vortex ring (not necessarily circular) moves
near a solid body, the flux Ji through C changes with the time t, which causes sound
emission according to (60):

pF(x, t) = −ρ0Γ
4πc

J ′′
i (t−

x

c
)
xi

x2
. (63)

This phenomenon is analogous to the Faraday’s law in the electromagnetism. The present
case of vortex sound is valid in an asymptotic sense. However, the Faraday’s law in the
electromagnetism is valid rigorously.

8 Vortex-Edge interaction

8.1 Pressure formula
When a vortex moves near by a sharp edge E of a semi-infinite plate (a non-compact

body), the wave emission is quite different from a compact body.
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The acoustic pressure is given by

p(x, t) = −ρ0

∫
L(y, τ) · ∇yG(x,y; t− τ) d3y dτ.

There is an additional time integral because of the non-compactness of the body. The
Green’s function G satisfies the boundary ondition on the edge-plate E:

x1 < 0, x2 = 0, −∞ < x3 < ∞.

Using an approximate Green’s function G∗ (Kambe 1986), we obtain

p(x, t) =
ρ0√
2π3

sin 1
2 θ (sinφ)

1
2√

c x

(
d
dt

) 3
2
∫

ω(y, t) ·Ψ(y) d3y, (64)

where φ = cos−1(x3/x). The fractional derivative is defined by

(
d
dt

)1
2

g(t) =
1
2π

∫ ∞

−∞
(−iω)

1
2 ĝ(ω) e−iωtdω =

∫ t

−∞
ġ(s)

ds
[π(t− s)]

.

The acoustic pressure is composed of the angular factor,

F (θ, φ) = sin 1
2 θ (sin φ)

1
2 , (Cardioid)

and the time factor,

f(t) = Γ
(
d
dt

) 3
2

J(t), J(t) =
∫

S

(∇×Ψ) · n dS.

The function J(t) represents the volume flux J through S of the hypothetical potential
flow flowing around the edge E (Kambe, 1986).

9 Oblique collision of two vortex rings

9.1 Pressure formula
A general higher order expansion formula was developed to represent acoustic emission

by an oblique collision of two vortex rings in a viscous fluid [9]. It is found that a third
order component is found to be significant.

The acoustic pressure in the far field is given by

p(x, t) =
5− 3γ
12

ρ0

πc2
1
x
K(2)(tr) +

ρ0

c2
xi xj

x3
Q

(3)
ij (tr) +

ρ0

c3
xi xj xk

x3
Q

(4)
ijk(tr) + · · · ,

where tr = t− x/c,

Qijk(t) =
1
12π

∫
D

(y × ω)i yj yk d3y,
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and the superscript (n) denotes the n-th time derivative.
The third term represents a deviation from the axi-symmetry, which vanishes in

the case of head-on collision of two vortex rings. However, in the oblique collision, it is
found that the asymmetric terms are significant. This was observed in the experiment by
Kambe, Minota & Takaoka (1993).

10 Summary

General pressure formula has been presented in the following form:

p(x, t) =
5− 3γ
12

ρ0

πc2
1
x
K(2)(tr)− ρ0

4πc
xi

x2
P

(2)
i (tr)

+
ρ0

c2
xi xj

x3
Q

(3)
ij (tr) +

ρ0

c3
xi xj xk

x3
Q

(4)
ijk(tr) + · · · .

Sound generations by vortex rings are reviewed for the following four cases:

A. Head-on collision of two vortex rings.

B. Vortex-Body interaction.

C. Vortex-Edge interaction.

D. Oblique collision of two vortex rings.
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